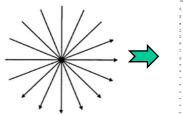
Fast Mode and Depth Decision in HEVC Intra Prediction Based on Edge Detection and Partitioning Reconfiguration

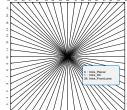
陳高星 池永研究室 修士2年

Research background

HEVC intra prediction

- 1. In H.264, there are only 9 prediction modes, but HEVC increased to 34 modes.
- 2. In H.264, intra unit partitioning only 16x16 and 4x4, but HEVC increased to multiples sizes from 4x4 to 64x64.

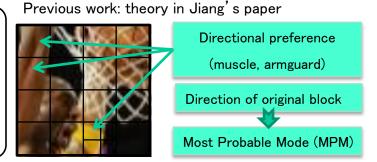

■ Target

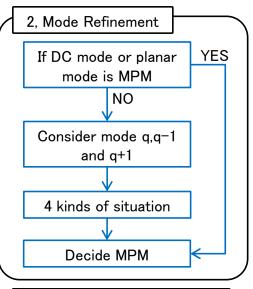

Fast and efficient intra prediction algorithm is necessary

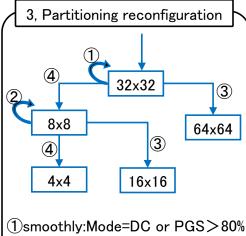
Proposed method

1,Pixel Gradient Statistics (PGS) and Mode Refinement (MR) based fast mode decision

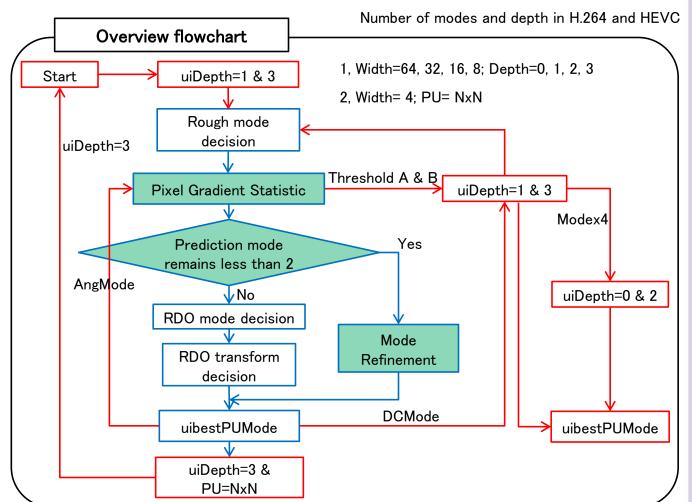
2, Partitioning reconfiguration based fast depth decision




Directions in H.264


Directions in HEVC

4	1, Pixel Gradient Statistics
	Pixel gradient calculation
	Gradient-mode matching
	Mode statistics


PU Size	H.264	HEVC		
4×4	9	35		
8x8	0	35		
16x16	4	35		
32×32	0	35		
64×64	0	35		

- (1)smoothly:Mode=DC or PGS>80% (2)smoothly:Mode=DC or PGS>85%
- 3Same prediction mode for 4 CU

4 roughly

Simulation result:

	Jiang's Paper			Mode Decision Only			Mode & Depth Decision		
SEQUENCE	BDBR	BDP	TS	BDBR	BDP	TS	BDBR	BDP	TS
Average	0.82	-0.044	19.92	0.53	-0.038	28.45	0.61	-0.041	42.84

■ Conclusion: With the proposed algorithm, approximately 42.84% time saving can be achieved. BD-Rate increase is only 0.61% and BD-PSNR loss only 0.041db. This result is better than previous work both in time-saving and performance loss.

